Benzimidazolium-cyclodextrin Inclusion Complexes

ALINA NICOLESCU, ${ }^{1,2}$ MIHAELA BALAN, ${ }^{2}$ EMILIAN GEORGESCU, ${ }^{3}$ FLORENTINA GEORGESCU, ${ }^{3}$ LAURA URSU, ${ }^{2}$ BOGDAN C. SIMIONESCU, ${ }^{2}$ PETRU FILIP, ${ }^{1}$ CALIN DELEANU. ${ }^{1,2, *}$
${ }^{1}$ Romanian Academy, "C. D. Nenitescu" Organic Chemistry Centre, 202B Spl. Independentei, 060023, Bucharest, Romania
${ }^{2}$ Romanian Academy, "Petru Poni" Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica, 700847, Iasi, Romania
${ }^{3}$ Research Center Oltchim, 1 Uzinei Str., 240050, Râmnicu Vâlcea, Romania

Abstract

A series of benzimidazolium salts bearing a para-halogenophenyl end group in position 3 was subject to complexation with a - and b-cyclodextrins. Two out of the three studied compounds were leading to inclusion complexes with both cyclodextrins. For both cyclodextrins the strength of interaction with bezimidazolium ions increases in the order $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}$.

Keywords: benzimidazolium salts, benzimidazolines, cyclodextrins, inclusion complexes, NMR

1-Benzyl-3-[2-(aryl)-2-oxoethyl]-5,6-dimethylbenzimidazolium salts and ylides have been extensively used by us as intermediates in the synthesis of various benzymidazole fused rings or other heterocycles resulting from the imidazole ring opening [1-6]. These syntheses are part of our wider interest in the study of chemistry and properties of various nitrogen containing heterocycles [7-18]. There is a wide interest in studying cyclodextrin inclusion complexes of a range compounds with various aims including changing the solubility, drug/ compound delivery carriers, structural or theoretical studies, etc. [19-22], including of course compounds with benzimidazole moieties [23-26]. To our knowledge there is no study up to date involving cyclodextrin complexes with 1-benzyl-3-[2-(aryl)-2-oxoethyl]-benzimidazolium salts. The solubility in water of 1-benzyl-3-[2-(aryl)-2-oxoethyl]-5,6-dimethyl-benzimidazolium salts is quite low and the possible complexation with cyclodextrins would possibly change significantly this physical property. Moreover, it would be interesting to asses which moieties, i.e. 1-benzyl, 3 -aryloxoethyl, or 5,6-benzo-fused ring are the preferred complexation sites of these compounds.

In this study we report on the synthesis of 1-benzyl-3-[2-(4-fluorophenyl)-2-oxoethyl]-5,6-dimethylbenzimidazolium bromide (1a), 1-benzyl-3-[2-(4-chlorophenyl)-2-oxoethyl]-5,6-dimethylbenzimidazolium bromide (1b) and 1-benzyl-3-[2-(4-bromophenyl)-2-oxoethyl]-5,6-dimethylbenzimidazolium bromide (1c) and on their complexation with a-cyclodextrin ($\boldsymbol{\alpha} \mathbf{C D}$) and b-cyclodextrins ($\boldsymbol{\beta C D}$).

Experimental part

Melting points were determined on a Boetius apparatus and are uncorrected. The IR spectra were recorded on a Nicolet Impact 410 spectrometer, in KBr pellets. The NMR spectra have been recorded on Bruker Avance III 400 and Bruker DRX 400 instruments, equipped with a 5 mm multinuclear inverse detection z-gradient probe and a 5 mm direct detection z-gradient QNP probe, operating at 400.1 and 100.6 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclei. For the benzimidazolium bromides derivatives, the chemical shifts are reported in d units (ppm), for ${ }^{1} \mathrm{H}$ relative to internal TMS and for ${ }^{13} \mathrm{C}$ relative to the residual peak of the solvent (ref.: $\mathrm{CHCl}_{3} 77.0 \mathrm{ppm}$). H,H-COSY,

H,C-HSQC and H,C-HMBC experiments, were recorded using standard pulse sequences in the version with z-gradients, as delivered by Bruker with TopSpin 1.3 PL10 spectrometer control and processing software. For the benzimidazolium bromides-cyclodextrins mixtures, the chemical shifts are reported in δ units (ppm), and were electronically referred to the residual peak of the solvent (ref.: $\mathrm{H}_{2} \mathrm{O} 4.8 \mathrm{ppm}$). The $\mathrm{H}, \mathrm{H}-$ ROESY experiments were recorded using standard pulse sequence, with water suppression, as delivered by Bruker with TopSpin 2.1 PL6 spectrometer control and processing software.

Synthesis of benzimidazolium bromides derivatives.
To a solution of 5 mmole of 1-benzil-5,6-dimethylbenzimidazoline in 30 mL acetone, 5 mmole of substituted phenacyl bromide was added. The reaction mixture was heated at reflux temperature for 3 h and left overnight at room temperature. The solid was filtered off, washed on the filter with 10 mL mixture of acetone-diethyl ether 1:1 and recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$.

1-Benzyl-3-[2-(4-fluorophenyl)-2-oxoethyl]-5,6dimethylbenzimidazolium bromide (1a): white crystals with m.p. $238-240^{\circ} \mathrm{C}$. Yield: 98%. Anal. calcd. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrFN}_{2} \mathrm{O}$ (453.35): C 63.58; H 4.89; N 6.18. Found: C 63.35; H 4.96; N 6.03. IR (KBr, cm ${ }^{-1}$): 2998, 1694, 1595, 1557, 1488, 1453, 1361, 1230, 1187, 1159, 1137. ${ }^{1} \mathrm{H}$ NMR $\left(C D C l, 25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 2.35(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-5, \mathrm{CH}_{3}-6\right), 5.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 6.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\right.$ CO), 7.15 ($2 \mathrm{H}, \mathrm{t}, 8.6 \mathrm{~Hz}, \mathrm{H}-3$ "), 7.30 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7$), $7.33-$ 7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-4$), 8.24 ($2 \mathrm{H}, \mathrm{dd}, 8.8$, $5.2 \mathrm{~Hz}, \mathrm{H}-2$ "), $10.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}^{2}\right.$, $\left.25^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 20.5\left(\mathrm{CH}_{3}-5\right.$ or $\left.\mathrm{CH}_{3}-6\right)$, $20.6\left(\mathrm{CH}_{3}-5\right.$ or $\left.\mathrm{CH}_{3}-6\right)$, $51.4\left(\mathrm{CH}_{-} \mathrm{Ph}\right), 53.7\left(\mathrm{CH}_{3}-\mathrm{CO}\right), 113.0(\mathrm{C}-$ 7), 113.2 (C-4), 116.3 (d, $\left.22 \mathrm{~Hz}, \mathrm{C}-3^{2 \prime}\right), 127.9$ (C-2'), 129.2 (C-4'), 129.23 (C-7a), 129.4 (C-3'), 129.9 (d, 2.8 $\mathrm{Hz}, \mathrm{C}-1$ "), 130.9 (C-3a), 131.7 (d, $9.7 \mathrm{~Hz}, \mathrm{C}-2$ "), 132.2 (C-1’), $137.4(\mathrm{C}-6), 137.7(\mathrm{C}-5), 166.6$ (d, $257.6 \mathrm{~Hz}, \mathrm{C}-$ 4"), 188.9 (C=O).

1-Benzyl-3-[2-(4-chlorophenyl)-2-oxoethyl]-5,6dimethylbenzimidazolium bromide (1b): white crystals with m.p. $235-237^{\circ} \mathrm{C}$. Yield: 93%. Anal. calcd. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{BrClN}_{2} \mathrm{O}$ (469.80): C 61.36; H 4.72; N 5.96. Found: C 61.21; H 4.59; N 6.05. IR (KBr, cm ${ }^{-1}$): 3002,

[^0]
[^0]: *email: calin.deleanu@yahoo.com

